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Introduction 

Metabolic syndrome (MetS) is determined by a set of multiple physical diseases 

that concertedly increase diabetes mellitus, cardiovascular disease, and vascular 

and neurological complications such as cerebrovascular accidents (1-4). 
According to the World Health Organization (WHO), blood pressure, obesity, and 

lipid disorders are essential components of MetS (5-7). This syndrome is 

accompanied by a decrease in the life quality of patients and causes serious 
damage to the healthcare system (8,9). It should be noted that MetS has become 

a global health problem. The prevalence of MetS worldwide reaches 20% to 30% 

according to increases with age and by gender (10-12). 
The DYRK1B gene is involved in some diseases, such as MetS. Missense 

mutations in the DYRK1B are associated with MetS. An arginine to cysteine 

substitution at position 102 (R102C) in the highly conserved domain alters the 
protein's function (13-15). MetS is a rare autosomal dominant disorder caused by 

two missense mutations, H90P and R102C, in DYRK1B located on chromosome 

q13.219. MetS is characterized by abdominal obesity, type 2 diabetes, 
hypertension, and premature coronary artery disease (16-18). According to the 

results, the mutant alleles increase the DYRK1B function. DYRK1B-H90P or 

DYRK1B-R102C overexpression in HepG2 hepatocytes results in greater 
induction of the gluconeogenesis enzyme (Glucose-6-phosphatase) than normal 

DYRK1B. Additionally, R102C mutation affects the effect of DYRK1B on 

Hedgehog and Wnt signaling pathways and promotes the fat differentiation in 
3T3-L1 preadipocyte cells (19-22).  

Site-directed mutagenesis, one of the essential techniques in molecular 

biology, has been widely used to investigate the structure and function of nucleic 
acids and proteins, the mechanisms of genetic diseases, and the effect of genome 

modification (23-25). PCR-mediated site-directed mutagenesis is one of the most 

powerful methods for creating gene mutations in vitro (26-29). This method 
consists of two sequential steps of PCR. The primary PCR reactions produce two 

mutated DNA fragments with overlapping ends and a secondary reaction that 

creates a single piece by joining two components (30,31). 

Lentiviral vectors are handy for investigating mutant gene expression. 

Lentiviruses are of interest considering their ability to infect dividing and non-
dividing cells, enter the cell genome, explore gene and protein function, low level 

of cellular toxicity, and their application in gene therapy and cell therapy (32-35). 

Therefore, their unique characteristics make them suitable for investigating the 
expression of the desired mutant gene in the in vitro/in vivo environment (36-38). 

Currently, gene therapy using lentivirus is being performed in a wide range 

of diseases. The purpose of this study is to describe the scientific steps of 
engineering recombinant lentivirus carrying DYRK1B-R102C and placing it in 

the transgenic pathway. The production of such a lentivirus can help in creating 
MetS models and more comprehensive investigations of this disease. 

 

Methods 

Study design 

The Shiraz University of Medical Sciences, which follows the National Institutes 

of Health guidelines for the care and use of animals, approved the protocols and 

experiments in this study.  In the present fundamental study, RNA samples were 
extracted from the fat tissues of 3-month-old mice free of the pathogen to create 

mutations in the desired gene. Considering the higher expression of DYRK1B in 

adipose tissues, samples were prepared from the adipose tissues around the 
mice’s testicles. Then, RNA was extracted from the samples and used for cDNA 

synthesis. To isolate adipose tissues, mice were anesthetized by intraperitoneal 

injection of ketamine/xylazine (100/10 mg/kg). A small incision was made in the 
abdomen with a sterile scissor, and the fat mass around the testicles was 

removed with the help of sterile forceps. The steps for separating adipose tissue 

from mice are shown in Figure 1. 

RNA isolation and cDNA synthesis 

TriPure Isolation Reagent (Roche, Germany) accomplished the RNA extraction 

from mouse fat tissue. Optical density ratios were examined using 260/280 nm; 
the extraction quality was assessed using a Nanodrop™ spectrophotometer 

(Nanodrop; Thermo Fisher Scientific, Wilmington, DE, USA). The cDNA was 

synthesized using 3.0 μg total RNA by RevertAid™ F first S and cDNA Synthesis 
kit (Thermo Fisher Scientific, Inc., Waltham, MA, USA). In brief, the reaction 

was performed with 3.0 μg total RNA, 4 μl 5x reaction buffer, 1 μl oligo-dT or 

random hexamer primers, 2μl dNTP mix, 1 μl reverse transcriptase, and 1ml 

Ribolock inhibitor. The reaction conditions were as follows: 25 °C for 5 minutes, 

42 °C for 60 minutes, 70 °C for 5 minutes, and the cDNA was stored at -80 °C. 

Primer design  

The gene-specific primers (GSP), including forward (FGSP) and reverse (RGSP), 

were designed to contain restriction sites NotIand EcoRI by AllelID v.7.5 

software (PREMIER Biosoft, Palo Alto, CA, USA). The forward mutagenic 
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primers (FMP) and reverse mutagenic primers (RMP) were complementary to 

each other, with the mutagenic bases (CT) in the center of each primer. The 

primer sequence is shown in Table 1.  
 

 
Mutagenesis by overlap extension-PCR  

Mutagenesis by OE-PCR consists of two primary PCR reactions and a secondary 
PCR reaction. The direct PCR reaction for each primer pair was carried out in 

tubes of separate, using 10 μl 2x Master Mix Red (Ampliqon A/S, Odense, 

Denmark), 1 μl FGSP, 1 μl RMP, 1 μl cDNA, 7 μl water, and another tube consist 
of 10 μl Mastermix, 1 μl RGSP,1 μl FMP,1 μl cDNA, 7 μl water. The PCR profile 

was used as follows: initial denaturation for 5 minutes at 95 °C, followed by 30 

cycles of 30 seconds at 94 °C, 30 seconds at 60 °C, and 1 minute at 72 °C. A final 
elongation of 72 °C followed this profile for 5 minutes. PCR reactions were 

performed using the Applied Biosystems Veriti 96-Well Thermal Cycler 

Instrument (ABI, Veriti, USA). At 60 °C for all primers, set the annealing 
temperature (Ta). Subsequently, 1% agarose gel stained with a safe stain 

visualized the primary PCR products. Gel excise and purify the PCR products, 

then for the overlap PCR, using a 1:1 ratio of both excised fragments (~75ng 

each) in the master mix without the primers for the first 10-13 cycles. Later the 

forward primer of the first fragment and the reverse primer of the last piece were 

added to the cocktail and ran for another 25-30 cycles, which produced the full-
length mutagenic DNA and then excised gel-purified to be used for cloning. 

Cloning and transformation 

The mutagenic DNA and LeGO-iG2 plasmid were digested with EcoRI and NotI 
(Fermentas, Germany). These enzymes have restriction sites in LeGO-iG2 and 

the prepared mutagenic DNA. The digestion reaction was performed using 5 μl 
of DYRK1B DNA (212 ng/μl), 1μl of tango buffer, 1 μl of EcoRI (10 U/μl), 1 μl 

of NotI (10 U/μl), and 2 μl of DDW. In another reaction LeGO-iG2 2.5 µl (487 

ng/μl), tango buffer 1 μl, EcoRI 1μl (10 U/μl), NotI 1 μl (10 U/μl), and DDW 2 
μl. 

The digested products were purified from the gel using the gel extraction kit 

(Qiagen, USA). The ligation reaction was carried out as follows: 20μl of 
DYRK1B, 7μl of LeGO-iG2, 3.3μl of T4 DNA ligase buffer, 1.7 μl of T4 DNA 

ligase (5 U/μl) and incubate at 16 °C for 20 hours. 10 μl of ligation reaction in 70 

µL of competent Escherichia coli DH5 α were transformed using the heat shock 

method. The transformed bacteria were cultured on LB agar containing 

ampicillin 100 μg/mL and incubated overnight at 37 °C. Colony-PCR was carried 

out to approve colonies containing the recombinant vector. In the next step, the 
recombinant vector was extracted by a QIAprep Miniprep Kit (Qiagen, USA). 

The cloning accuracy was confirmed by enzyme digestion with EcoRI (10 U/μl) 

and NotI (10 U/μl), followed by sequencing (DNAMAN software). Enzymatic 

digestion was carried out using recombinant vector 5 μl (238 ng/μl), 1 μl of 

Buffer, 1 μl of NotI (10 U/μl), 1μl of EcoRI (10 U/μl), and DDW 3 μl. 

Virus production and titration 

A lentivirus-based vector expressing GFP was produced using transient co-

transfection of Hek-293T cells with a three-plasmid combination. In brief, (i) 

transfer lentiviral vector 15µg (LeGO-iG2), (ii) envelope plasmid VSV-G 10µg 
(psPAX2), and (iii) packaging plasmid 10µg (pMD2) were used in a calcium 

phosphate transfection mix and transfected into human embryonic kidney cells 

(HEK 293T cells) (Pasteur Institute, Iran) and culture medium was replaced to 
fresh medium 18 hours after the transfection and viral supernatants were 

harvested 36-, 48- and 72-hours post-transfection. We centrifuged at low speed 

(300 g for 5 minutes) and filtered through a 0.45 m filter. The lentiviruses 
supernatant was concentrated by ultra-centrifugation at 70,000 g in a swinging 

bucket rotor for 1 hour at 4 °C. The viral pellet was then re-suspended in 200 μl 

of PBS 1X. Titration of the eGFP-expressing lentivirus vector was carried out by 
HEK 293T cell transduction, and the eGFP-expressing cell was examined by flow 

cytometry (BD Biosciences). The lentivirus stocks were diluted in four 

concentrations (10X, 100X, 1,000X, and 10,000X), and then these dilutions were 
added to a four-well plate with 2 × 105 293T cells per well. GFP-positive cells 

were estimated by flow cytometry. The titration results by flow cytometry are 

shown in Figure 2. Using the formula: TU/ml = seeding cell number × fluorescent 

cell number percentage × dilution factor/transduction volume in ml, Transducing 

Units (TU) were calculated. 
 

 

Results 

Mutagenesis by overlap extention PCR  

The results showed that the desired mutation was performed correctly using the 

OE-PCR method. Following the primary PCR reactions, the secondary PCR 
reactions were produced in multiple bands, including the expected band, which 

was gel-excised and sent for sequencing. These reaction results are shown in 

Figure 3. DNA sequencing indicated that the point mutation was correctly 
performed.  
 

 

Figure 1. The steps for adipose tissue isolation from mice 
 

 

Table 1. The list of primers used in this study. The enzyme cleavage position and site-

directed mutagenesis for primers are shown as well 

Primer 

name 
Sequence (𝟓′ → 𝟑′) Description 

FGSP GGTCGGAATTCTGCTGGTTGCATTACTGGGTA 
Primer for EcoRI 

restriction enzyme 

RGSP AGCGGCCGCGGGTAGCAGCAAGTCCAGTC 
Primer for NotI 

restriction enzyme 

FMP TACATTGTGtGCAGTGGCGAG 
Primer for site-

directed mutagenesis 

RMP CTCGCCACTGCaCACAATGTA 
Primer for site-

directed mutagenesis 

 

 

 
Figure 2. The lentirivus titration by flow cytometry. A) GFP analysis on HEK293T 

cells after the transduction with different concentrations of lentirivus (10X, 100X, 

1,000X, and 10,000X). B) The GFP positive percentage. 
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Recombinant vector production  

The mutagenic DNA was electrophoresed after digestion with EcoRI and NotI. A 

fragment without any considerable size change was observed. The LeGO iG2 

vector was also digested with the same enzymes, and a 7829-bp band was 
observed. In the next step, the target gene was inserted into the LeGO-iG2 using 

T4 DNA ligase. The ligation product was used to transform Escherichia coli DH5, 

and colony-PCR was carried out using the forward and reverse primers for 
DYRK1B to confirm gene insertion into LeGO-iG2. The colony-PCR product 

was electrophoresed in gel, and a fragment of 2240 bp was observed. The 

recombinant vector was purified using the QIAprep Miniprep Kit and subjected 
to digestion with EcoRI and NotI (i), the 7829 bp band was identical to the 

linearized vector, and (ii) observed two pieces were. Another band was consistent 

with DYRK1B (2240 bp band). The DYRK1B 2240 bp band is shown in Figure 
4. The extracted vectors were sent for sequencing, and the results were checked 

with BLAST. Successful cloning was finally confirmed by sequencing the 

recombinant vector, and the sequencing output is shown in Figure 5.  

 

Virus production and titration  

HEK 293T cell line was co-transfected with the plasmids leGO-iG2-DYRK1B, 

pMD2, and psPAX2 to produce a GFP-DYRK1B expressing lentiviral. 

Fluorescent microscopy showed that GFP was expressed 48 hours post-
transfection in more than 90% of these cells Figure 6. Lentiviral-containing 

supernatant was concentrated using the ultracentrifuge-based method. The flow 

cytometry for viral titer measuring was performed 72- hours post-transduction of 
HEK 293T cells. Calculate virus titration using GFP positive cell percentage in 

10,000X concentration (5%). The viral titer was 108 TU/ml on HEK293T cells. 

 

Discussion 

Today, gene transfer is one of the essential techniques in diagnosing, preventing 

and treating diseases under gene therapy. Different vectors are used for gene 
transfer. Among the viral vectors, lentiviruses have gained attention in recent 

years, considering their outstanding characteristics and important implications 

for clinical trials. As essential tools to investigate the molecular pathways 
involved in the disease, they are being developed and can be helpful in the design 

of the disease model (39-41). These viruses belong to the retroviridae family and, 

like retroviruses, can insert their genome into the host's genome after entering the 
host cell (37,41-43). Can do this during the cell division phase. Nevertheless, 

lentiviruses can enter the host cell's nucleus and insert their genome into the host's 

genome without requiring cell division (37,42,44,45). Many unnecessary and 
pathogenic genes of the virus have been removed, and DNA replication defects 

increase biological safety in these vectors (24,43). 

Second-generation lentiviral vectors are composed of three separate 
lentiviral vectors. One of which in this study is the leGO-iG2 transfer vector, and 

the rest are lentiviral packaging vectors (pMD2 and psPAX2). In the present 

study, after being mutated in the mouse DYRK1B, it was cloned in the leGO-iG2 
transfer vector containing the GFP marker and then transfected with the pMD2 

and psPAX2 vectors in HEK 293T cells to produce lentivirus in these cells. After 

observing the green light resulting from the GFP expression in HEK 293T cells 
under a fluorescent microscope, recombinant lentivirus was confirmed, and virus 

titration was performed by flow cytometry as well.  

This study is based on the production of recombinant lentivirus, which is 
achieved by inserting a gene into its genome, and we described the technique of 

producing recombinant lentivirus carrying the mutated gene. The use of 

recombinant lentivirus carrying DYRK1B R102C to produce disease models in 
animals, including mice, can be very useful in discovering the molecular 

mechanisms and pathways involved in metabolic syndrome. 

DYRK1B overexpression has been found to promote cell cycle progression 
in certain cancers (46-49), and it has been suggested that DYRK1B protein plays 

a vital role in pathways that are disrupted in MetS (19,50-53). The molecular 

mechanisms of this event are not very clear. However, it seems that Dyrk1b 
protein inhibits the rate of glucose uptake and glycolysis by inhibiting the Ras-

RAF-MEK pathway. Further, it has been found that the R102C mutation 

augments p27Kip turnover and enhances the adipogenic effects of DYRK1B 
(54). We acknowledge that the limitation of this study is that several other options 

for stages of lentivirus production were not investigated in this study. However, 

the primary purpose of this study was to identify steps that can be easily 
replicated in most laboratories when working with hard-to-transfect cells without 

having to purchase any additional equipment or incur extra costs. It would have 
been better to investigate other mutations involved in the function of the 

DYRK1B, such as the H90P missense mutation. For this, more cost and time were 

required, which we hope will be done by us or others in future research. 
Considering the advantages of lentiviruses in vivo use, one of our limitations is 

the lack of in vivo use of these lentiviruses. In the future, our focus is on using 

these lentiviruses to create transgenic eukaryotic cells and MetS disease models. 
It is necessary to mention that, according to the goals of lentivirus production 

containing the DYRK1B R102C mutation, which is transferred to eukaryotic 

cells, and finally, production of the disease model, we did not evaluate immune 
responses to lentivirus or lentivirus components in this study, but it should be 

noted that cell turnover in vitro is not representative of an in vivo setting. 

This lentivirus was used in the present study to express the DYRK1B-R102C 
stably. There are no reports on lentiviral production for genes involved in MetS. 

Lentiviral vector-based cell therapy is safe in human and animal experiments. 

Therefore, this method is essential for treating patients with MetS. 

 

Figure 3. The mutagenesis overlaps extension PCR product. A) Both primary PCR 

reactions produced single bands estimated at 540bp and 1,700bp, which matched the 

expected size. Since single bands were obtained, gel purification was unnecessary. B) 

The secondary PCR reaction produced multiple bands, including the expected band, at 

2,240 bp (Indicated by black arrow). The gel purification had to be done because the 

single band was not created. DNA ladder, 1 Kb. 

 

Figure 4. The colony-PCR was performed to confirm colonies. After DNA extraction 

from the bacterial colonies, the PCR reaction was performed to confirm the presence of 

the DYRK1B R102C gene, sample 1 colony-PCR (2240 bp band). Sample 2, 1 Kb DNA 

ladder. 

 

 

Figure 5. Sequencing to confirm cloning. A) Sequencing chromatogram with forward 

primer to confirm the accuracy of cloned gene fragment in LeGO-iG2 vector. B) 

Sequencing chromatogram showing the mutations as dots and highlighted sections in 

the aligned sequence. 

 

Figure 6. Lentivirus production and GFP-DYRK1B gene expression under fluorescent 

microscopy. A) HEK293T cells before transfection, B) HEK293T cells 48 hours post-

transfection 



Mutagenesis in DYRK1B by overlap extension-PCR 37 

Conclusion 

We have described a method that can be successfully used for lentiviral gene 

transfer into eukaryotic cells. Lentiviruses carrying the DYRK1B R102C mutation 

offer significant advantages for in vitro and in vivo research on metabolic 

syndrome. The use of lentiviruses can be a strong approach to developing gene 

therapy and treating rare and incurable diseases. 
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